Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.000
Filter
1.
Neurologia (Engl Ed) ; 39(4): 340-344, 2024 May.
Article in English | MEDLINE | ID: mdl-38616061

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to assess the possible pharmacological interactions between safinamide and antidepressants, and in particular the appearance of serotonin syndrome with data from real life. METHODS: We conducted a retrospective observational study of patients with Parkinson's disease from our Movement Disorders Unit, who were under treatment with any antidepressant drug and safinamide. Specifically, symptoms suggestive of serotonin syndrome were screened for. Also, we collected time of simultaneous use, doses of levodopa and other antiparkinsonian drugs. RESULTS: Clinical records were reviewed for the study period of September 2018 to September 2019. Seventy-eight PD patients who were treated with safinamide of which 25 (32.05%) had a concomitant treatment with an antidepressant drug, being sertraline and escitalopram the most frequent. Mean age was 80 years±8.43 and H&Y stage was 3 [2-4]. Mean dose of levodopa used was 703.75mg±233.15. Median duration of concomitant treatment with safinamide and antidepressant drug was 6 months (IQR 20.5), and over eighteen months in 5 cases. No case of serotonin syndrome was recorded, neither was any of its typical manifestations combined or in isolation. CONCLUSIONS: Our real clinical practice study suggests that concomitant use of safinamide with antidepressant drugs in PD patients seemed to be safe and well tolerated, even in the long term. However, caution is warranted, individualizing treatment regimens and monitoring the potential appearance of adverse effects.


Subject(s)
Alanine/analogs & derivatives , Benzylamines , Parkinson Disease , Serotonin Syndrome , Humans , Aged, 80 and over , Levodopa/adverse effects , Antidepressive Agents/adverse effects , Parkinson Disease/drug therapy
2.
Cell Biochem Funct ; 42(3): e4014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38616346

ABSTRACT

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERß is often considered to be safer. In this review, we explore the role of ERß in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aß) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERß activation and the process underlying ERß's neuroprotective mechanisms in AD and PD.


Subject(s)
Alzheimer Disease , Parkinson Disease , Female , Male , Humans , Parkinson Disease/drug therapy , Estrogens/pharmacology , Estrogen Receptor beta/genetics , Estrogen Receptor alpha/genetics , Alzheimer Disease/drug therapy
3.
J Biochem Mol Toxicol ; 38(5): e23714, 2024 May.
Article in English | MEDLINE | ID: mdl-38629493

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease featured by progressive loss of nigrostriatal dopaminergic neurons, the etiology of which is associated with the existence of neuroinflammatory response and oxidative stress. Vincamine is an indole alkaloid that was reported to exhibit potent anti-inflammatory and antioxidant properties in many central and/or peripheral diseases. Nevertheless, the specific role of vincamine in PD development remains unknown. In our study, dopaminergic neuron loss was determined through immunohistochemistry staining and western blot analysis of tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of PD mice. Reactive oxygen species (ROS) production and malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were detected through DHE staining and commercially available kits to assess oxidative stress. Pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) levels in the SN were measured via RT-qPCR and western blot analysis. Microglial and astrocyte activation was examined through immunofluorescence staining of Iba-1 (microglia marker) and GFAP (astrocyte marker) in the SN. The regulation of vincamine on the NF-κB and Nrf2/HO-1 pathway was estimated through western blot analysis. Our results showed that vincamine treatment decreased TNF-α, IL-1ß, and IL-6 mRNA and protein levels, reduced GFAP and Iba-1 expression, decreased ROS production and MDA level, and increased SOD activity and GSH level in the SN of PD mice. Mechanically, vincamine repressed the phosphorylation levels of p65, IKKß, and IκBα but enhanced the protein levels of Nrf2 and HO-1 in PD mice. Collectively, vincamine plays a neuroprotective role in PD mouse models by alleviating neuroinflammation and oxidative damage via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway.


Subject(s)
Brain Injuries , Neurodegenerative Diseases , Parkinson Disease , Vincamine , Mice , Animals , NF-kappa B/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Signal Transduction , Oxidative Stress , Superoxide Dismutase/metabolism
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612620

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Parkinson Disease , Animals , Parkinson Disease/drug therapy , 60650 , Diabetes Mellitus, Type 2/drug therapy , Brain-Gut Axis , Databases, Factual , Dopamine
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612761

ABSTRACT

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Subject(s)
Acetylcysteine/analogs & derivatives , Parkinson Disease , Synucleinopathies , Humans , Animals , Rats , Parkinson Disease/drug therapy , Parkinson Disease/etiology , alpha-Synuclein/genetics , Endoplasmic Reticulum Chaperone BiP , Administration, Intranasal , Neuroprotection
6.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625397

ABSTRACT

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Subject(s)
Antineoplastic Agents , Dictyostelium , Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Molecular Dynamics Simulation , Molecular Docking Simulation
7.
Hawaii J Health Soc Welf ; 83(4): 99-107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585286

ABSTRACT

When compared to their urban counterparts, rural regions have worse health outcomes and more challenges in health care access. As the only island state in the US, Hawai'i's unique geographic layout may magnify these disparities. However, there are limited publications on the impact of urban-rural disparities in health care in Hawai'i. The study team aimed to identify the challenges rural health care providers face when managing treatment of Parkinson's disease (PD), a complex disease. A self-administered survey was sent to 247 eligible providers who practiced in Hawai'i and prescribed PD medications from 2017-2019. The survey assessed: provider's comfort level in PD management; utilization and accessibility of health care services; perspective on barriers to PD care; and perspective on telemedicine. Providers were categorized into O'ahu providers (OP, urban) and neighbor island (Hawai'i, Kaua'i, and Maui) providers (NIP, rural). The final sample size was 44 providers (18% response rate). NIP were significantly less likely than OP to report access to social workers (P=.025), geriatric services (P=.001), and psychologist/psychiatrist/mental health professionals (P=.009). There were no statistical differences in: criteria used for PD diagnosis, resources utilized for PD education, and comfort in prescribing PD medications. The findings show that NIP are just as engaged and capable in providing PD care as OP. However, NIP encounter more limitations to accessibility, which can affect the quality of PD care that their rural patients receive. Further research is needed to understand how these limitations affect health-related outcomes in PD as well as other chronic diseases.


Subject(s)
Parkinson Disease , Telemedicine , Humans , Aged , Hawaii , Parkinson Disease/drug therapy , Health Services Accessibility , Health Personnel
8.
Pharmacol Res Perspect ; 12(2): e1190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597598

ABSTRACT

Analysis was conducted to compare levodopa/carbidopa pharmacokinetics and drug-related material in plasma of healthy participants after receiving a continuous infusion of Levodopa/Carbidopa Intestinal Gel (LCIG) to a continuous subcutaneous infusion of foslevodopa/foscarbidopa. Study samples were from a randomized, open-label, 2-period crossover study in 20 healthy participants. Participants received either 24-h foslevodopa/foscarbidopa SC infusion to the abdomen or LCIG delivered for 24 h to the jejunum through a nasogastric tube with jejunal extension. Serial blood samples were collected for PK. Comparability of the LD PK parameters between the two treatment regimens was determined. Selected plasma samples were pooled per treatment group and per time point for metabolite profiling. LC-MSn was performed using high-resolution mass spectrometry to identify drug-related material across the dosing regimens and time points. The LD PK parameter central values and 90% confidence intervals following the foslevodopa/foscarbidopa subcutaneous infusion were between 0.8 and 1.25 relative to the LCIG infusion. With LCIG administration, LD, CD, 3-OMD, DHPA, DOPAC, and vanillacetic acid were identified in plasma at early and late time points (0.75 and 24 h); the metabolic profile after administration of foslevodopa/foscarbidopa demonstrated the same drug-related compounds with the exception of the administered foslevodopa. 3-OMD and vanillacetic acid levels increased over time in both treatment regimens. Relative quantification of LC-MS peak areas showed no major differences in the metabolite profiles. These results indicate that neither the addition of monophosphate prodrug moieties nor SC administration affects the circulating metabolite profile of foslevodopa/foscarbidopa compared to LCIG.


Subject(s)
Carbidopa , Parkinson Disease , Humans , Carbidopa/pharmacokinetics , Levodopa/pharmacokinetics , Antiparkinson Agents/pharmacokinetics , Cross-Over Studies , Healthy Volunteers , Parkinson Disease/drug therapy , Gels/therapeutic use , Dopamine Agonists
9.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Article in English | MEDLINE | ID: mdl-38599826

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Subject(s)
Berberine Alkaloids , Berberine/analogs & derivatives , Neuroblastoma , Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Coptis chinensis , Dopaminergic Neurons/metabolism , Rhizome , Case-Control Studies , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mutation
10.
Neurología (Barc., Ed. impr.) ; 39(3): 254-260, Abr. 2024. tab
Article in English | IBECS | ID: ibc-231691

ABSTRACT

Purpose: Covid-19 has affected all people, especially those with chronic diseases, including Parkinson's Disease (PD). Covid-19 may affect both motor and neuropsychiatric symptoms of PD patients. We intend to evaluate different aspects of Covid-19 impact on PD patients. Methods: 647 PD patients were evaluated in terms of PD-related and Covid-19-related clinical presentations in addition to past medical history during the pandemic through an online questioner. They were compared with an age-matched control group consist of 673 individuals and a sample of the normal population consist of 1215 individuals. Results: The prevalence of Covid-19 in PD patients was 11.28%. The mortality was 1.23% among PD patients. The prevalence of Covid-19 in PD patients who undergone Deep Brain Stimulation (DBS) was 18.18%. No significant association was found between the duration of disease and the prevalence of Covid-19. A statistically significant higher prevalence of Covid-19 in PD patients who had direct contact with SARS-CoV-19 infected individuals was found. No statistically significant association has been found between the worsening of motor symptoms and Covid-19. PD patients and the normal population may differ in the prevalence of some psychological disorders, including anxiety and sleeping disorders, and Covid-19 may affect the psychological status. Conclusion: PD patients possibly follow tighter preventive protocols, which lead to lower prevalence and severity of Covid-19 and its consequences in these patients. Although it seems Covid-19 does not affect motor and psychological aspects of PD as much as it was expected, more accurate evaluations are suggested in order to clarify such effects.(AU)


Objetivo: La COVID-19 ha afectado a toda la población, especialmente a aquellos con enfermedades crónicas, incluyendo a los pacientes con enfermedad de Parkinson (EP). La COVID-19 puede empeorar tanto los signos motores como los síntomas neuropsiquiátricos de los pacientes con EP. El objetivo de este estudio es evaluar diferentes aspectos del impacto de la COVID-19 en los pacientes con EP. Métodos: A través de un cuestionario virtual se evaluó a 647 pacientes con EP de acuerdo con sus presentaciones clínicas relacionadas con la EP y con la COVID-19, además de la historia médica previa durante la pandemia. Se compararon con un grupo de controles sanos de la misma edad que constaba de 673 individuos y una muestra de la población general de 1.215 individuos. Resultados: La prevalencia de la COVID-19 en pacientes con EP fue del 11,28%. La mortalidad fue del 1,23% entre los pacientes con EP. La prevalencia de COVID-19 en pacientes con EP con estimulación cerebral profunda fue del 18,18%. No se encontró una asociación significativa entre la duración de la enfermedad y la prevalencia de COVID-19. Se halló una prevalencia mayor de COVID-19 que fue estadísticamente significativa en pacientes con EP que tuvieron contacto directo con personas infectadas con SARS-CoV-2. No se encontró una asociación estadísticamente significativa entre el empeoramiento de los signos motores y la COVID-19. Los pacientes con EP y la población general podrían diferir en la prevalencia de algunos trastornos psicológicos, incluidos los trastornos de ansiedad y del sueño, y la COVID-19 podría afectar al estado psicológico. Conclusión: Los pacientes con EP posiblemente sigan protocolos preventivos más estrictos, lo que conduce a una menor prevalencia y gravedad de COVID-19 y de sus consecuencias en estos pacientes.(AU)


Subject(s)
Humans , Male , Female , Parkinson Disease/drug therapy , /epidemiology , Deep Brain Stimulation , Prevalence , Pandemics , Neurology , Nervous System Diseases , Surveys and Questionnaires , Neuropsychiatry
11.
CNS Drugs ; 38(5): 315-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38570412

ABSTRACT

The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Gastrointestinal Microbiome/physiology , Levodopa/pharmacology , Dopamine
12.
CNS Drugs ; 38(5): 333-347, 2024 May.
Article in English | MEDLINE | ID: mdl-38587586

ABSTRACT

Parkinson's disease (PD) is associated with the development of psychosis (PDP), including hallucinations and delusions, in more than half of the patient population. Optimal PD management must therefore involve considerations about both motor and non-motor symptoms. Often, clinicians fail to diagnosis psychosis in patients with PD and, when it is recognized, treat it suboptimally, despite the availability of multiple interventions. In this paper, we provide a summary of the current guidelines and clinical evidence for treating PDP with antipsychotics. We also provide recommendations for diagnosis and follow-up. Finally, an updated treatment algorithm for PDP that incorporates the use of pimavanserin, the only US FDA-approved drug for the treatment of PDP, was developed by extrapolating from a limited evidence base to bridge to clinical practice using expert opinion and experience. Because pimavanserin is only approved for the treatment of PDP in the US, in other parts of the world other recommendations and algorithms must be considered.


Subject(s)
Antipsychotic Agents , Parkinson Disease , Psychotic Disorders , Urea/analogs & derivatives , Humans , Parkinson Disease/complications , Parkinson Disease/drug therapy , Psychotic Disorders/drug therapy , Psychotic Disorders/etiology , Hallucinations/complications , Hallucinations/drug therapy , Piperidines/therapeutic use , Antipsychotic Agents/therapeutic use
14.
N Engl J Med ; 390(13): 1176-1185, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38598572

ABSTRACT

BACKGROUND: Lixisenatide, a glucagon-like peptide-1 receptor agonist used for the treatment of diabetes, has shown neuroprotective properties in a mouse model of Parkinson's disease. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assessed the effect of lixisenatide on the progression of motor disability in persons with Parkinson's disease. Participants in whom Parkinson's disease was diagnosed less than 3 years earlier, who were receiving a stable dose of medications to treat symptoms, and who did not have motor complications were randomly assigned in a 1:1 ratio to daily subcutaneous lixisenatide or placebo for 12 months, followed by a 2-month washout period. The primary end point was the change from baseline in scores on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III (range, 0 to 132, with higher scores indicating greater motor disability), which was assessed in patients in the on-medication state at 12 months. Secondary end points included other MDS-UPDRS subscores at 6, 12, and 14 months and doses of levodopa equivalent. RESULTS: A total of 156 persons were enrolled, with 78 assigned to each group. MDS-UPDRS part III scores at baseline were approximately 15 in both groups. At 12 months, scores on the MDS-UPDRS part III had changed by -0.04 points (indicating improvement) in the lixisenatide group and 3.04 points (indicating worsening disability) in the placebo group (difference, 3.08; 95% confidence interval, 0.86 to 5.30; P = 0.007). At 14 months, after a 2-month washout period, the mean MDS-UPDRS motor scores in the off-medication state were 17.7 (95% CI, 15.7 to 19.7) with lixisenatide and 20.6 (95% CI, 18.5 to 22.8) with placebo. Other results relative to the secondary end points did not differ substantially between the groups. Nausea occurred in 46% of participants receiving lixisenatide, and vomiting occurred in 13%. CONCLUSIONS: In participants with early Parkinson's disease, lixisenatide therapy resulted in less progression of motor disability than placebo at 12 months in a phase 2 trial but was associated with gastrointestinal side effects. Longer and larger trials are needed to determine the effects and safety of lixisenatide in persons with Parkinson's disease. (Funded by the French Ministry of Health and others; LIXIPARK ClinicalTrials.gov number, NCT03439943.).


Subject(s)
Antiparkinson Agents , 60650 , Parkinson Disease , Peptides , Humans , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Disabled Persons , Double-Blind Method , Motor Disorders/drug therapy , Parkinson Disease/drug therapy , Peptides/administration & dosage , Peptides/adverse effects , Peptides/therapeutic use , Treatment Outcome , 60650/administration & dosage , 60650/adverse effects , 60650/therapeutic use , Disease Progression , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/adverse effects , Neuroprotective Agents/therapeutic use , Injections, Subcutaneous
15.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575601

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
16.
Drug Des Devel Ther ; 18: 1053-1081, 2024.
Article in English | MEDLINE | ID: mdl-38585257

ABSTRACT

Methods: Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results: A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion: A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.


Subject(s)
Ferroptosis , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Antioxidants , China , Lipid Peroxidation
17.
Sci Rep ; 14(1): 8424, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600209

ABSTRACT

Using deep learning has demonstrated significant potential in making informed decisions based on clinical evidence. In this study, we deal with optimizing medication and quantitatively present the role of deep learning in predicting the medication dosage for patients with Parkinson's disease (PD). The proposed method is based on recurrent neural networks (RNNs) and tries to predict the dosage of five critical medication types for PD, including levodopa, dopamine agonists, monoamine oxidase-B inhibitors, catechol-O-methyltransferase inhibitors, and amantadine. Recurrent neural networks have memory blocks that retain crucial information from previous patient visits. This feature is helpful for patients with PD, as the neurologist can refer to the patient's previous state and the prescribed medication to make informed decisions. We employed data from the Parkinson's Progression Markers Initiative. The dataset included information on the Unified Parkinson's Disease Rating Scale, Activities of Daily Living, Hoehn and Yahr scale, demographic details, and medication use logs for each patient. We evaluated several models, such as multi-layer perceptron (MLP), Simple-RNN, long short-term memory (LSTM), and gated recurrent units (GRU). Our analysis found that recurrent neural networks (LSTM and GRU) performed the best. More specifically, when using LSTM, we were able to predict levodopa and dopamine agonist dosage with a mean squared error of 0.009 and 0.003, mean absolute error of 0.062 and 0.030, root mean square error of 0.099 and 0.053, and R-squared of 0.514 and 0.711, respectively.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Catechol O-Methyltransferase , Activities of Daily Living , Dopamine Agonists/therapeutic use , Neural Networks, Computer
18.
PLoS One ; 19(4): e0302102, 2024.
Article in English | MEDLINE | ID: mdl-38625964

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Neurodegeneration of the substantia nigra (SN) and diminished release of dopamine are prominent causes of this progressive disease. The current study aims to evaluate the protective potential of ethanolic extract of Mentha piperita (EthMP) against rotenone-mediated PD features, dopaminergic neuronal degeneration, oxidative stress and neuronal survival in a mouse model. Swiss albino male mice were assigned to five groups: control (2.5% DMSO vehicle), PD (rotenone 2.5 mg/kg), EthMP and rotenone (200mg/kg and 2.5mg/kg, respectively), EthMP (200 mg/kg), and Sinemet, reference treatment containing levodopa and carbidopa (20 mg/kg and rotenone 2.5mg/kg). Behavioral tests for motor functional deficit analysis were performed. Anti-oxidant capacity was estimated using standard antioxidant markers. Histopathology of the mid-brain for neurodegeneration estimation was performed. HPLC based dopamine level analysis and modulation of gene expression using quantitative real-time polymerase chain reaction was performed for the selected genes. EthMP administration significantly prevented the rotenone-mediated motor dysfunctions compared to PD group as assessed through open field, beam walk, pole climb down, stepping, tail suspension, and stride length tests. EthMP administration modulated the lipid peroxidation (LPO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels, as well as glutathione-s-transferase (GST) and catalase (CAT) activities in mouse brain. EthMP extract prevented neurodegeneration in the SN of mice and partially maintained dopamine levels. The expression of genes related to dopamine, anti-oxidant potential and synapses were modulated in M. piperita (MP) extract treated mice brains. Current data suggest therapeutic capacities of MP extract and neuroprotective capacities, possibly through antioxidant capacities. Therefore, it may have potential clinical applications for PD management.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Parkinson Disease/metabolism , Antioxidants/metabolism , Mentha piperita/metabolism , Rotenone/pharmacology , Dopamine/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Disease Models, Animal
19.
Mol Biol Rep ; 51(1): 510, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622307

ABSTRACT

Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.


Subject(s)
Diethylstilbestrol/analogs & derivatives , Neurodegenerative Diseases , Parkinson Disease , Phosphodiesterase 4 Inhibitors , Animals , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Parkinson Disease/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Cyclic AMP/metabolism , Neurodegenerative Diseases/metabolism , Cyclic GMP/metabolism , Mammals/metabolism
20.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515319

ABSTRACT

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Rats , Male , Animals , Levodopa/adverse effects , Parkinson Disease/drug therapy , Receptor, Metabotropic Glutamate 5 , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/prevention & control , Dyskinesia, Drug-Induced/metabolism , Oxidopamine
SELECTION OF CITATIONS
SEARCH DETAIL
...